Eric Walker¹

December 1, 2015

Three figures in an appendix to the report by Levi *et al.* show spectra with mass peaks for ions with masses at $m \ge 100$. Although some of the ions were no doubt cluster ions, heavier elements might also have been present. We examine two of the figures for possible elements and derive approximate upper bounds on the counts relative to the other peaks in the figures. Ranges of mass peaks are consistent with small amounts of samarium, rhenium, hafnium and other elements. Many of the elements are either α or β emitters.

In March 2014, Giuseppe Levi and others carried out a month-long test of Andrea Rossi's E-Cat. Rossi has claimed that the E-Cat can generate many watts of excess power with fuel consisting of nickel and hydrogen. Appendix 3 to the report for the test contains an isotopic analysis by Ulf Bexell and Josefin Hall that was carried out on the "fuel" and "ash" that went into and was taken out of the device [1]. Although the main details that were highlighted related to changes in lithium and nickel, a number of SIMS spectra were included which showed various mass peaks. Three of the spectra showed ions at masses $m \geq 100$, which might have been cluster ions or heavier nuclides. Here we look at the possibility that several ranges of peaks correspond to heavier nuclides.

The three spectra with mass peaks at $m \ge 100$ have somewhat different counts. One of them was obtained before the surface and any carbon adhesive sticker on it had been sputtered off. For this reason we will not consider that spectrum. Following are approximate counts for mass peaks in the two other spectra in Appendix 3 showing masses at $m \ge 100$ that are explicitly called out by Bexell and Hall:

Mass		Approx. counts		
peak ^a	Possible nuclides	Fig. 7	Fig. 8	
105	$^{105}\mathrm{Pd}$	1600	1500	
115	115 In, 115 Sn	2600	?	
117	^{117}Sn	?	3000	
128	¹²⁸ Te, ¹²⁸ Xe	1600	2000	
133	^{133}Cs	2500	3500	
141	141 Pr	1800	2000	
147	^{147}Sm	900	24000	
156	156 Gd, 156 Dy	2400	?	
165	165 Ho	800	?	
173	173 Yb	400	?	
178	$^{178}{ m Hf}$	600	?	
187	187 Re, 187 Os	400	?	
207	207 Pb	?	4500	
221	No long-lived nuclides.	?	4000	

^a Mass peaks above 238 omitted.

Table 1: Mass peaks in the fuel at $m \ge 100$ in Appendix 3 to Levi *et al.*, after sputtering [1].

¹eric.walker@gmail.com

Unlike the graphs for the spectra showing masses at m < 100, for which a vertical bar appears to correspond one-to-one with a mass peak, it seems that vertical bars in the graphs for masses at $m \ge 100$ do not have a clean one-to-one correspondence with an integral mass number. It will be difficult for this reason to guess at the counts for mass peaks that are not explicitly labeled in the graphs. In Table 1 we will just leave a "?" with the understanding that there were potentially significant counts at these mass peaks as well as ones not listed in the table, even though such peaks were not labeled.

For the sake of simplicity, let us assume that elements in Table 1, if they were actually in the fuel, were present in their natural abundances and were not isotopically enriched. Table 2 provides the natural abundances for elements in Table 1, as well as for tungsten, which has been mentioned as another possible ingredient in the fuel [2, 3]. Included as well is the total count for the element that the amount of isotope implies, working backwards from the natural abundance, which is taken from Wikipedia. An asterisk has been placed next to the minimum amount across all isotopes for an element, which can give us a rough sense of the upper bound on the ion count for the element in the two spectra, and, from this, an idea of the relative amount should the element have been present. In contrast to Table 1, in Table 2 we have attempted a very rough guess at the amounts for mass peaks not explicitly labeled in the spectra in order to obtain some kind of upper bound for the ion count, usually overestimating in the process. Figure 7 was generally used in preference to Figure 8.

Table 3 summarizes the information in Table 2 and indicates whether an element is an α or β emitter, with the half-life and natural abundance in parentheses for decaying isotopes. In several cases α decay is energetically possible but the half-life either is only theoretical or is unavailable. From Table 3 we can see that the peaks in Figure 7 are consistent with the presence of small amounts of samarium, gadolinium, hafnium, tungsten, osmium, rhenium, and lead, all of which are α emitters. The α or β decay activity of an element in the fuel will be a function of the amount of the element, the half-lives and natural abundances of the unstable isotopes, and, if it can be accomplished, the extent to which decay can be induced.

References

- [1] G. Levi et al. Observation of Abundant Heat Production from a Reactor Device and of Isotopic Changes in the Fuel. 2014. URL: http://www. elforsk.se/Global/Omv%C3%83%C2%A4rld_ system/filer/LuganoReportSubmit.pdf.
- [2] Frank Acland. Norman Cook on E-Cat Fuel Elements (Tungsten and Iron mentioned). URL: http: //www.e-catworld.com/2015/11/29/normancook-on-e-cat-fuel-elements-tungsten-and-ironmentioned/.
- Japan CF-Research Society. JCF16 Abstracts. URL: http://jcfrs.org/JCF16/jcf16-abstracts. pdf.

Elem.	A	NA (%)	Max count	Implied total	Elem.	A	NA (%)	Max count	Implied total
	109	1.02	400	2 0 0 1	Cd	159	0.20	400	2.0.5
Pd	102	1.02 11.14	400	3.904 8.1o3		$152 \\ 154$	0.20 2.18	400	2.0e5 4.6o4
	$104 \\ 105$	21.14	900 1500	6.1e3		$154 \\ 155$	2.10	1000	4.004 6.803
	105	22.00 27 22	400	1.5e3*		156	20.47	2400	1.3e3
	107	±race	-400 0	-	Gu	$150 \\ 157$	15.65	600	1.204 3.8e3
	107	26.46	400	1 5e3		158	24.84	200	9.009 8.1e2*
	110	11.72	400	3.4e3		160	21.01	200	9.1e2
	113	4.29	400	9.3e3		156	0.06	2400	4.0e6
In	115	95.71	2600	$2.7e3^{*}$		158	0.10	600	6.0e5
	112	0.97	400	4.1e4		160	2.34	200	8.5e3
	114	0.66	400	6.1e4	Dv	161	18.91	200	$1.1e3^{*}$
	115	0.34	2600	7.6e5	v	162	25.51	400	1.6e3
	116	14.54	2100	1.4e4		163	24.90	400	1.6e3
	117	7.68	2100	2.7 e4		164	28.18	400	1.4e3
Sn	118	24.22	2100	$8.7\mathrm{e}3$	Но	165	100	800	8.0e2*
	119	8.59	1000	1.2e4		168	0.13	500	3.8e5
	120	32.58	400	$1.2e3^{*}$		170	3.04	400	1.3e4
	122	4.63	400	8.6e3		171	14.28	300	2.1e3
	124	5.79	400	6.9e3	Yb	172	21.83	300	1.4e3
	126	trace	0	_		173	16.13	400	2.5e3
	120	0.09	400	4.4e5		174	31.83	300	$9.4e2^{*}$
	122	2.55	400	1.6e4		176	12.76	400	3.1e3
	123	0.89	400	4.5e4		174	0.162	400	2.5e5
Те	124	4.74	400	8.4e3		176	5.206	400	$7.7\mathrm{e}3$
	125	7.07	400	$5.7\mathrm{e}3$	Hf	177	18.606	500	2.7e3
	126	18.84	1000	5.3e3		178	27.297	600	2.2e3
	128	31.74	1600	5.0e3		179	13.629	500	3.7e3
	130	34.08	1500	$4.4e3^{*}$		180	35.1	400	$1.1e3^{*}$
	124	0.095	400	4.2e5		182	trace	0	_
	126	0.089	1000	1.1e6	W	180	0.12	400	3.3e5
	128	1.91	1600	8.4e4		182	26.5	300	1.1e3
	129	26.4	1600	6.1e3		183	14.31	200	1.4e3
Xe	130	4.07	400	9.8e3		184	30.64	200	$6.5e2^{*}$
	131	21.2	1500	7.1e3		186	28.43	400	1.4e3
	132	26.9	300	$1.1e3^{*}$		184	0.02	400	2.0e6
	134	10.4	400	3.8e3		186	1.59	400	2.5e4
	136	8.86	200	2.3e3		187	1.96	400	2.0e4
Cs	133	100	2500	$2.5e3^{*}$	Os	188	13.24	400	3.0e3
	135	trace	0	—		189	16.15	400	2.5e3
	137	trace	0	-		190	26.26	400	1.5e3
Pr	141	100	1800	1.8e3*		192	40.78	400	9.8e2*
	144	3.07	800	2.6e4	Re	185	37.4	400	1.1e3
Sm	146	trace	0	_		187	62.6	400	6.4e2*
	147	14.99	900	6.0e3		204	1.4	500	3.6e4
	148	11.24	300	2.7e3	D 1	206	24.1	500	2.1e3
	149	13.82	300	2.2e3*	Pb	207	22.1	4500	2.0e4
	150	7.38	400	5.4e3		208	52.4	500	$9.5e2^{*}$
	152	26.75	600 1000	2.2e3		210	trace	0	_
	154	22.75	1000	4.4e3					_

Table 2: Natural abundances for elements listed in Table 1.

Elem.	Upper bound of count	Decay modes
Pd	1.5e3	β^- (6.5e6 y, trace), $\beta^-\beta^-$ (>6e17 y, 11.7%)
In	2.7e3	$\beta^- \; (4.4\mathrm{e}14 \; \mathrm{y}, 95.7\%)$
Sn	1.2e3	β^- (2.3e5 y, trace)
Te	4.4e3	$\beta^{-}\beta^{-}$ (7.9e20 y, 34.1%), $\beta^{-}\beta^{-}$ (2.2e24, 31.7%)
Xe	1.1e3	$eta^-eta^-~(2.2\mathrm{e}21~\mathrm{y},8.9\%)$
\mathbf{Cs}	2.5e3	β^{-} (2.3e6 y, trace), β^{-} (30.17 y, trace)
\Pr	1.8e3	
Sm	2.2e3	α (1.0e8 y, trace), α (1.1e11 y, 15.0%), α (7e15 y, 11.2%)
Gd	1.8e2	$\alpha \ (1.08e14 \ \mathrm{y}, \ 0.2\%)$
Dy	1.1e3	(lpha)
Ho	8.0e2	(lpha)
Yb	$9.4\mathrm{e}2$	(lpha)
$_{\rm Hf}$	1.1e3	α (2e15 y, 0.2%), β^- (8.9e6 y, trace)
W	$6.5\mathrm{e}2$	$\alpha \ (1.8e18 \ y, \ 0.12\%)$
Os	9.8e2	$\alpha~(2.0\mathrm{e15}~\mathrm{y},1.6\%)$
Re	6.4e2	α (4.1e10 y, 62.6%), β^- (4.1e10 y, 62.6%)
Pb	9.5e2	α (22.3 y, trace), β^- (22.3 y, trace)

Table 3: Upper-bound counts for various elements potentially in fuel relative to those shown in Figure 7.